Lecture 13

Micelles formation.

Factors affecting the CMC

- Hydrophobic interaction:
 - entropy lowered due to arranging of surfactants into the micelles
 - entropy increased due to removal hydrocarbon chains from water (much higher gain!)
- Head group interaction:
 - hydration repulsion: head group needs to be dehydrated to a approach
 - steric effects: due to reduction of fluctuations (entropy reduction)
 - electrostatic repulsion

longer hydrophobic chain leads to lower CMC

increase in ionic strength leads to lower CMC

Micelle structure considerations

- The structure of a micelle depends on:
 - thermodynamics of selfassembly
 - forces within the aggregate
 - intra-aggregate forces
- Size and shape of the micelles are defined as a distribution (no exact size or shape!)
- The distribution might have several equilibrium values at the same time

Optimal head group area

 We can express the energy factors through the geometrical parameters of the micelle

energy gain due to decrease of water-oil surface tension.

Thus it can be written as : γ =20-50 mJ/m².

Optimal head group area

$$\mu_N = \gamma a + K / a$$

minimizing:

$$\mu_{N_{-\min}} = 2\gamma a_0; \ a_0 = \sqrt{K/\gamma}$$

optimal head group area, mainly depends on the head (not the tail length)

$$\mu_N = 2\gamma a_0 + \frac{\gamma}{a} (a - a_0)^2$$

Optimal headgroup area

Optimal headgroup area approach:

- contains essential features of interlipid interaction
- explains an energy minimum about which the energy varies parabolically (equilibrium N!)
- doesn't include into account
 - specific headgroup interaction, e.g. ionic bridging
 - specific chain-chain interaction
 - effect of surface curvature on the energy

Geometric packing

- The geometry of aggregate is defined by the following factors:
 - optimal headgroup area a_0 ;
 - maximum effective length of the chain, "critical chain length"
 I_c;
 - volume of the hydrocarbon chain v.

$$l_c \le l_{\text{max}} \approx (0.154 + 0.1265 \cdot n) nm$$

 $v \approx (27.4 + 26.9 \cdot n) \times 10^{-3} nm^{-3}$

packing parameter (shape factor):

minimal possible size corresponds to equilibrium (entropy)

Spherical micelles

 For a spherical micelle of radius R with aggregation number M:

$$M = \frac{4\pi R^2}{a_0} = \frac{4\pi R^3}{3v} \qquad \Longrightarrow \qquad R = 3v/a_0$$

$$\frac{v}{l_c a_0} < \frac{1}{3}$$

Example: SDS-micelle M=74; 12 carbon chain; from equation we get:

 $v=0.35 \text{ nm}^3$; $I_c=1.67 \text{ nm}$; $a0=0.57 \text{ nm}^2$; R=1.84 nm $v/a_0I_c=0.37$

slightly non-spherical shape

Cylindrical micelles

$$\frac{1}{3} < \frac{v}{a_0 l_c} < \frac{1}{2}$$

- lipids forming spherical micelles at low salt concentration might switch to cylindrical at higher ionic strength;
- from thermodynamics, the cylindrical micelles are large and polydisperse, mean aggregation number $\sim C^{\frac{1}{2}}$.
- most energy is associated with ends of the micelle (spherical caps are unfavorable)

Bilayers

$$\frac{1}{2} < \frac{v}{a_0 l_c} \le 1$$

 formed when the headgroup is small or chain is bulky, e.g. lipids with two chains

Bilayer: Some estimates

residence time inside the membrane

$$\tau_R = \tau_0 / \exp(-\Delta E / kT) = 55\tau_0 / \text{CMC}$$
 time between colliding the interface

$$\tau_0 = 10^{-9} - 10^{-7} s$$

$$\tau_R(micelles) \sim 55 \cdot 10^{-9} / 10^{-3} \sim 10^{-4} s;$$

$$\tau_R(bilayers) \sim 55 \cdot 10^{-7} / 10^{-10} \sim 10^4 s;$$

Bilayer: Some estimates

elastic energy (stretching) of bilayer

elastic energy =
$$\frac{1}{2}k_a(a-a_0)^2/a$$

compare:
$$\mu_N^0 = 2\gamma a_0 + \frac{\gamma}{a}(a - a_0)^2$$

$$k_a \approx 2\gamma$$
 per monolayer;

$$k_a \approx 4\gamma$$
 per bilayer

Vesicles

- at some condition it could be energetically favorable to eliminate the edges of a bilayer forming vesicles
- however it requires curvature, so lipids in the outer layer should pack into truncated cones:

$$\frac{v}{a_0 l_c} \le 1$$

for a vesicle:

$$R_c \approx \frac{l_c}{1 - v/(a_0 l_c)}; N \approx 4\pi \left[R_c^2 + (R_c - t)^2 \right] / a_0$$

Lipid bilayers

- biological membrane are formed by lipid bilayers
- prevent diffusion of polar molecules (possess a high resistance for ionic currents)

$$\frac{e^2}{8\pi\varepsilon_0 R} \left(\frac{1}{\varepsilon_2} - \frac{1}{\varepsilon_1}\right) = 1.37 \cdot 10^{-19} J \approx 33kT$$
0.2nm

typical resistance ~ 108 Ohm/cm².

Factors affecting structure changes

- factors affecting headgroup area: ionic strength, pH
- factors affecting chain packing (e.g. chain branching and unsaturation)
- effect of temperature, affects both a_o and I_c .
- lipid mixtures

Lipid	Critical packing parameter v/a _o / _c	Critical packing shape	Structures formed
Single-chained lipids (surfactants) with large head-group areas: SDS in low salt	< 1/3	Cone θ_0	Spherical micelles
Single chained lipids with small head-group areas: SDS and CTAB in high salt, nonionic lipids	1/3-1/2	Truncated cone	Cylindrical micelles Color Col
Double-chained lipids with large head-group areas, fluid chains: Phosphatidyl choline (lecithin), phosphatidyl serine, phosphatidyl glycerol, phosphatidyl inositol, phosphatidic acid, sphingomyelin, DGDG*, dihexadecyl phosphate, dialkyl dimethyl ammonium salts	1/2-1	Truncated cone	Flexible bilayers, vesicles
Double-chained lipids with small head-group areas, anionic lipids in high salt, saturated frozen chains. phosphatidyl ethanolamine, phosphatidyl serine + Ca ²⁺	~1	Cylinder	Planar bilayers
Double-chained lipids with small head-group areas, nonionic lipids, poly (cis) unsaturated chains, high T: unsat. phosphatidy! ethanolamine, cardiolipin + Ca ²⁺ phosphatidic acid + Ca ²⁺ cholestero!, MGDG ^b	>1	Inverted truncated cone or wedge	Inverted micelles

Emulsions

- Emulsion dispersion of two immiscible liquids. Outer (continuous) and inner phases are distinguished.
- Emulsion are stabilized by addition of surfactants
- Macro- and micro-emulsions can be distinguished:
- Macro-emulsions:
 - concentration of surfactant just above CMC
 - spherical droplets 0.1-10µm, highly polydispersed
 - thermodynamically unstable
- Microemulsions:
 - high concentration of surfactant
 - thermodynamically stable
 - typical sizes 2-50nm

- we expect that from the thermodynamics prospective the emulsions will eventually coalesce
- this is delayed by
 - reducing surface tension (surfactants)
 - repulsive forces
 - kinetics

Emulsion stability

 selection of emulsifier determines which type of emulsion will be formed

Bancroft rule: the phase the emulsifier is more soluble in will be the continuous phase

Harkins wedge theory: larger end of the emulsifier lies in the continuous phase

Winsor theory: based on ratio of cohesive energies

$$R = \frac{E_{LO}}{E_{HW}} \hspace{1cm} \text{R<1 O/W emulsion is formed} \\ \text{R>1 W/O emulsion is formed}$$

Griffin's hydrophile-lipophile balance (HLB) theory: Surfactants with low HLB (3-6) stabilize water-in-oil emulsions

Surfcatants with high HLB(8-18) stabilize oil-in-water emulsion

Kinetics of demulsification

forming loose clusters without loosing identity of drops (secondary minimum)

- Kinetics of demulsification
 - Diffusion limited encounter of droplets (Smoluchowski)

$$\frac{dc}{dt} = -8\pi DRc^2 = \frac{-8\pi k_B TR}{6\pi \eta R}c^2 = -\frac{4k_B T}{3\eta}c^2$$

$$\frac{dc}{dt} = -k_f c^2 \qquad k_f = \frac{4k_B T}{3\eta} \qquad \text{rate of flocculation, depends only on T and viscosity}$$

– If a barrier E* for coalescence exists:

$$\frac{dc}{dt} = -k_f \exp\left(-\frac{E^*}{k_B T}\right)c^2$$

$$\frac{1}{c} = \frac{1}{c_0} + k_f^* t, \quad k_f^* = k_f \exp\left(-\frac{E^*}{k_B T}\right)$$

Stages of droplet coalescence

Microemulsions

- Microemulsions (discovered in 1950s) are
 - thermodynamically stable;
 - formed spontaneously
 - react reversibly on the change in temperature and composition
 - consist of submicron size droplets

Microemulsions

 The radius of the droplet (in case of complete coverage by a surfactant)

volume fraction

$$V\phi_d = n\frac{4}{3}\pi R^3$$

$$V\phi_s = n4\pi R^2 L_s$$

$$R = \frac{3L_s\phi_d}{\phi_s}$$

R_c - core radius – radius of "neutral surface"

Elastic properties of surfactant films

- Laplace pressure is relatively small due to small surface tension
- Gibbs free energy of a curved surface:

Minimum in Gibbs free energy corresponds to "equilibrium" curvature

$$C_1 = C_2 = kC_0 / \left(2k + \overline{k}\right)$$

Microemulsions

emulsion evolution with temperature

45 40 $T(^{\circ}C)$ 35 Phase diagram of 50:50 30 water-octane mixture with C₁₂E₅ surfactant 25 20 0.1 0.2 0.3 0.0 ϕ_{s} 100× Water 36°C 38°C 42°C 27°C 32°C 20°C 22°C PIT

decrease in spontaneous curvature

Microemulsion applications

delivery of water insoluble vitamins and medicine

Example: AquaNova GmbH produces 30nm size micelle system suitable e.g. for delivery of vitamin E and vitamin A. Micelles are thermally, mechanically and pH stable

Application of surfactants

- Wetting: contact angle is reduced.
- Detergency:
 - detergent: mixture of surfactants with other additives for effective cleansing (builders, brighteners and bleaches, electrolyte filler)
 - cleansing efficiency grows with the concentration up to cmc
- Water repulsion
 - hydrophilic surface can be made hydrophobic
- Emulsification
- Froth flotation in ore treatment:
 - particles with hydrophobic surface stick to bubbles and are carried upwards when foam is formed (lead and copper sulfide ores, oxides, coal etc.)
- Oil recovery
- Membrane disruption

Emulsion polymerization

- monomer is prepared as emulsion in water stabilized by surfactants
- initiator is dissolved in water
- polymerization starts in the aqueous phase

initial polymerization in

> oligomers solubilized in the micelles

termination

Films and Foams

Structure of a foam layer:

Foam layer has a surface tension, therefore foam film tries to minimize the area:

Laplace equation is applicable as well:

 when a foam thickness decreases due to liquid drainage it forms black films: common black film (liquid core) and Newton black film (no liquid core)

Films and Foams

Foam formation (by bubbling)

Foams

- Wet foam: bubbles are spherical separated by thick liquid films
- Dry foam: mostly gas separated by thin lamellas. Individual cells are polyhedra.
 - three flat sides of poplyhedra meet at an angle of 120°.
 - configuration of 4 or more sides connecting at one line is unstable
 - at all corners the 4 edges meet in a tetrahedral arrangement

Films and Foams

- the Plateau border
 - as the curvature radius is smaller at the triple point, the pressure will be lower and the liquid will flow there dirupting the foam
 - foam can be stabilized by repulsive pressure between the adsorbed layers: disjoining pressure

Films and Foams

Permeability to gases

monolayer permeation: $J = k_{\scriptscriptstyle m} \Delta c_{\scriptscriptstyle m}$

diffusion through the solution: $J = \frac{DH}{z_b} \Delta c_b$

$$J\left(\frac{1}{k_m} + \frac{z_b}{DH} + \frac{1}{k_m}\right) = \Delta c$$

Measuring pressure in foam: Thin Film Balance

Pressure inside the liquid film:

$$\Pi = P_g - P_r + \frac{2\gamma}{r_C} - \rho g h$$

Problems

- Below what aggregation number SDS micelles can be spherical?
- Estimate CMC for Hexane in water. Surface tension of Hexane-Water interface is 51.1mN/m
- End-of chapter problems: 12.2, 5, 6